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Multifractal analysis techniques are applied to patterns in several abstract expressionist artworks, painted by
various artists. The analysis is carried out on two distinct types of structures: the physical patterns formed by
a specific color �“blobs”� and patterns formed by the luminance gradient between adjacent colors �“edges”�. It
is found that the multifractal analysis method applied to “blobs” cannot distinguish between artists of the same
movement, yielding a multifractal spectrum of dimensions between about 1.5 and 1.8. The method can distin-
guish between different types of images, however, as demonstrated by studying a radically different type of art.
The data suggest that the “edge” method can distinguish between artists in the same movement and is proposed
to represent a toy model of visual discrimination. A “fractal reconstruction” analysis technique is also applied
to the images in order to determine whether or not a specific signature can be extracted which might serve as
a type of fingerprint for the movement.
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I. INTRODUCTION AND BACKGROUND

The use of fractal analysis methods to study structure in
art and music is not a new field. Recently, the question of
perceptability of such fractal structure has been addressed.
The authors of Refs. �1,2� pose the question of whether or
not humans are “attuned” to the perception of fractal-like
optical and auditory stimuli. Similarly, Ref. �3� suggests that
there is a fractal-like signature in memory processes which
can be detected in the statistical variance of averaged re-
peated actions �such as repeated drawing lines of specific
lengths or shapes; the statistical variations in the lengths are
shown to be not purely random noise, but fractally ordered
“1/ f” noise�.

In the visual arts, there have been several contributions
made by the authors of �4–8�, in which the paintings of
Jackson Pollock play a prominent role. Of their many inter-
esting conclusions, the most striking is that Pollock’s drip
paintings almost uniformly possess a fractal dimension of
around 1.7. Also, these authors show that a high-resolution
fractal analysis of the images produces two distinct scaling
behaviors at a transition length scale of about 1 cm, which
they demonstrate can be used as an authentication tool for
artists and their paintings �8�.

This general fractal behavior was confirmed by the au-
thors of �9,10�, who also extended the study to other artists
of the abstract expressionist school �notably the Québec-
based group Les Automatistes�. It was discovered that many

of the paintings from these other artists possess a similar
fractal dimension, although the image resolutions used in the
aforementioned references are above the 1-cm threshold dis-
cussed above and thus do not identify a second scaling be-
havior. However, extending the analysis to include the mul-
tifractal spectrum of dimensions, as well as transforming the
image to alternate representations �e.g., edge structures or
other color spaces�, does not require additional resolution
and can serve equally as an authentication method �as will be
discussed in the report�.

Similar research on computer-generated cosmological
models suggests that the fractal �or box� dimension is a
vague statistic for identifying structural differences in point
sets and that the full multifractal spectrum can yield deeper
information as to the nature of the distributions �11�. How-
ever, it has been concluded that the utility of the method
seems limited to identifying classes of distributions formed
by different mechanisms, and not differences between indi-
vidual members of the same class.

In the following paper, this method will be applied to
two-dimensional, nonrepresentational images to ascertain
whether or not similar statements may be made about the
analysis. Summary results of this study have been reported in
Ref. �10�, but this paper will greatly expand upon the data
and present technical details of the analysis in diverse ways.
An overview of fractal and multifractal theory is first pre-
sented. Following this, the fractal �box� dimension for sev-
eral abstract expressionist paintings by different artists is per-
formed, and this is contrasted with the information
dimension for the same works. The box method is tested for
robustness in Sec. V.

As a control, these abstract expressionist are contrasted
with the deterministic “Artonomy” paintings by Avital �12�.
Like the three-dimensional distributions, the two former
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works can be interpreted to be formed by one type of mecha-
nism �although the comparison is perhaps more ambiguous�,
while the latter a decidedly different mechanism �this differ-
entiation will be further discussed in Sec. VIII�.

The analysis will then be extended to include the full
multifractal spectrum for each work. A comprehensive analy-
sis is performed on color patterns for the artists in question,
beginning in Sec. VII. Furthermore, issues addressing poten-
tial image reconstruction from the multifractal spectrum are
discussed in Sec. IX. Finally, as a toy model for visual dis-
crimination based on the notion that human perception may
be influenced by contrast edges instead of colors, the multi-
fractal spectra of contrast patterns in the paintings are ana-
lyzed in Sec. X. Some limitations of the method are dis-
cussed in Sec. XI, and concluding remarks are summarized
in Sec. XII.

II. THEORY OF MULTIFRACTALS

The similarity in form and function of the classic fractal
�or box� dimension, Shannon’s information dimension, and
the statistical correlation dimension is not a coincidence �see
Refs. �13–16� for general details of these dimensions�. In
fact, these quantities are but three members of an infinite set
of dimensions which characterize a fractal set. Since first
being introduced as a method of describing or quantifying
the behavior of strange attractor sets and turbulent flows,
multifractal analysis has gained steady momentum in physics
and fields abroad �17–21�. Comprehensive reviews of multi-
fractals and their applications in the physical sciences are
available in the aforementioned references, as well as such
works as �22–24�, in addition to many of the references cited
hereafter.

Classic geometric “monofractals” such as the Koch snow-
flake or Sierpinski carpet are defined by a single scale-
invariant behavior, which of course is the fractal dimension,
but in many cases a single such power law fails to charac-
terize completely the distribution in question. Multifractals,
on the other hand, may be regarded as an intricate weave of
an infinite number of fractals, all of which are characterized
by different �local� scaling dimensions. That is, each subset
forms a “sub fractal” describing a distinct substructure of the
whole. It is much more reasonable and realistic to expect
natural objects to exhibit this behavior.

Multifractal dimensions are generalizations of the Haus-
dorff measure �14�. The partition function for an � covering
�i.e., balls of radius �i� is defined as �18,21�

��q,�� = �
i

pi
q

�i
� , �1�

with pi a measure of the set or pattern density in the ball. For
given q ,��q��R, take the supremum �or infimum, depend-
ing on whether q is positive or negative, respectively� in the
limit �i→0 �thus find the minimal covering set for the gen-
eralized measure�. Then, there exists a critical value of �
���q� for which ��q ,�� goes from convergence to 0, to
divergence to �. At this transitional value, the sum converges
as ��q ,��=const. The minimal covering may be generalized

to balls of equal radii �i=�, whence it follows that

��q,�� = �−��q��
i

pi
q � 1, �2�

for a suitable renormalization of the measure. Hence,

�
i

pi
q � ���q�, �3�

and thus in the limit �→0, it can be shown that

��q� = lim
�→0

ln��
i

pi
q	

ln �
. �4�

Let the measure partition function over N��� balls of radius i
be

Z�q,�� = �
i=1

N���

�pi����q, �5�

and define the general scaling relation Z�q ,�����q−1�Dq �24�,
which ensures recovery of the Hausdorff dimension for q
=0, as well as normalization of Eq. �5� for q=1. From Eq.
�4�, it can be concluded that

Dq =
��q�
q − 1

. �6�

In the limit q→0, Eq. �1� reduces to the usual box dimen-
sion. Furthermore, the information and correlation dimen-
sions are recovered in the limits q→1, 2.

In practical applications, the box counting method can be
generalized to obtain the values of ��q� for given q. That is,
modify the partition function Z�q ,�� over N��� to sets of
covering boxes �instead of balls� of equal side �, where as
before pi��� is the relative density of the set in box i. The
scaling information of each moment is obtained by taking the
logarithmic derivative of Eq. �5� with respect to box size,
where

��q� =
d ln�Z�q,���

d ln���
. �7�

The moment parameter q can be thought of as a filter,
which identifies only the singularity characteristics of the
distribution at a particular “degree” of clustering. Increasing
values of q�0 emphasize the stronger local clustering nature
of the pattern, while decreasing values of q�0 the less sin-
gular regions. That is, higher values of q serve to “eliminate”
the smaller values of pi, yielding a subset of the overall dis-
tribution whose scaling behavior is more condensed �and
vice versa for negative q�. Likewise, the other Dq provide a
measure of the number of q-tuples whose mutual separation
is contained within a covering box �ball� of size �. Thus, a
quantitative measure of the Dq spectrum yields an under-
standing of all order of correlations among clusters of vary-
ing densities.

Certain key values of Dq are extremely useful in charac-
terizing the physical clustering characteristics of a set. In
addition to the values D0,1,2 mentioned before, the general-
ized dimensions for the limits q→ ±� yield valuable infor-
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mation about the maximal and minimal density regions of
the set. D� is a measure of the scaling behavior for the dens-
est clustering regions of the multifractal, while D−� corre-
sponds to the equivalent for the least dense or “rarefied”
regions.

In essence, the multifractal measures give an indication of
“how fractal is the fractal.” A measure of the difference be-
tween the box dimension and any successive Dq value,

� = Dq − D0, �8�

provides an estimate of the “degree” of inhomogeneity of the
associated probability distribution �23�. In particular, it
seems reasonable to evaluate �
q→� as an overall gauge of
the “depth” of inhomogeneity. Clearly, it follows that �=0
for single-scaling Euclidean normal or monofractal sets, so
the larger the value of �, the greater the “multifractality.”

III. FRACTAL EXPRESSIONISM

In the late 1990s, the application of fractal analysis to the
study of abstract expressionist art began to gain momentum,
the first of which was reported in �5�. It was concluded that
Jackson Pollock’s work did indeed present certain fractal
characteristics. Coined “fractal expressionism,” the authors
in question proposed that Pollock’s drip paintings were con-
structed by processes not unlike those which help to forge
the myriad of similarly fractal natural phenomena. In fact,
they further suggested that by painting with such “automa-
tism,” Pollock succeeded in capturing the very essence of
nature within his works.

In particular, it was noted that most of the paintings stud-
ied contain at least two distinct scaling behaviors at different
levels, much the same as the debated transitions to homoge-
neity in galaxy clustering. The first of these occurred at
scales on the order of from 1 mm to about 5 cm, beyond
which point a second scaling is observed up to scales of
several meters �4�. After a review of Pollock’s painting meth-
ods and techniques, it was determined that these two dimen-
sions were the result of two distinct physical processes. The
larger-scale patterns resulted from Pollock’s “Levy flights”
across the canvas �a Levy flight is a combination of discrete,
random jumps coupled with local fractal Brownian motion
�24��. Likewise, the small-scale structure was attributed to
his infamous “drip” technique, which was largely dependent
on the physical characteristics of the paint �viscosity, the
height from which it was dripped, absorption into the canvas,
etc�.

These two dimensions are coined DL �Levy� and DD
�drip�, where DL�DD and the transition between the two
values occurs roughly at length scales of the order of LT
�1 cm �8�. The values of DL generally approach 2, indica-
tive of the “space-filling” behavior of Pollock’s Levy flights
�4�. Furthermore, it was noted that DD tended to increase
from 1 to about 1.7 between the early 1940s to the late 1940s
and early 1950s, around the time Pollock perfected his drip
technique �25�.

Taylor et al. have also recently presented a comprehensive
fractal analysis of abstract expressionist paintings by numer-
ous artists �8�. In this report they propose six criteria based

on the DL ,DD, and LT signatures which can be used as an
authentication tool to identify Pollock’s style by comparing
these paintings to similar drip paintings by other artists �both
known and unknown�. The authors show that only paintings
by Pollock adhere to all six criteria, while works by other
artists do not �see �8� for details�.

The results of Taylor et al. rely on the use of extremely
high resolution scans of images, however, which can have
practical limitations both in terms of storage space �large
files� and more importantly long computation time. The
analysis technique herein uses images of moderate resolution
and represents an alternative method of authentication when
the methods of Taylor et al. are not feasible due to hardware
constraints. The method presented herein does not reach
small enough length scales to sufficiently probe the DD re-
gion discussed in the noted references, since the smallest box
sizes tend to be exactly at the threshold LT.

A. Image specifics

The majority of the images considered in this study are
digital scans of Pollock’s works from Refs. �25,26�. Images
by Les Automatistes have been scanned from �27�. The reso-
lution of the scans was chosen as 300 dpi, creating images
roughly 1000 pixels �px� in length �longest side� and files 20
Mb in size. The analysis has been performed on approxi-
mately 25 Jackson Pollock paintings, revealing similar trends
for each. However, this discussion will be restricted to a
small sample set of six. The images herein are listed in Table
I. At the specified resolution, each pixel corresponds to ap-
proximately 0.1–0.4 cm, although this will depend on the
actual reduction scale from the base image.

The covering boxes range in size from d=1024 px to d
=4 px or length scales of roughly 1.5–2.5 m to a few milli-
meters. Hence, the analysis covers about 3 orders of magni-
tude. Higher resolutions could allow for greater range of
scales, but would correspond to much larger images and
longer run times and higher memory requirements for the

TABLE I. Catalog of Jackson Pollock �P01—P06� and Les Au-
tomatistes �A01—A07� images used in the analysis.

ID Title �Date� Dimensions �cm2�

P01 Blue Poles �1952� 486.8�210

P02 Autumn Rhythm �1950� 525.8�266.7

P03 Lavender Mist �1950� 300�221

P04 Reflections of the Big Dipper �1947� 111�92.1

P05 Number One A 1948 172.7�264.2

P06 Number One 1949 160�259

A01 Au chateau d’Argol �1947� 55�50.5

A02 Fièvres �1976� 65�80

A03 Tumulte �1973� 81�101.5

A04 Voyage au bout du vent �1978� 137�188

A05 Suite marocaine no. 1 �1975� 81.3�101

A06 La danse et l’espoir �1975� 81.5�101

A07 Sans titre, Montréal �1959� 56�43
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code. It was verified that the quality of the fits did not change
appreciably for a lower limit of d=2 and the estimated di-
mensions were statistically equal to within the associated
error.

B. Color variance filter process

Accurate definitions of colors and color differences are
very difficult to obtain. Any investigation which relies on
color matching must do so with care. The following proce-
dure is a rough example of how like colors might be ex-
tracted from an image, based on their Euclidean separation in
the three-dimensional RGB color space.

To trace or filter the pattern of a given pigment, the varia-
tion in shading is accounted for via the color-variance filter
process. The images studied herein are 24-bit color maps;
hence, each separate channel may assume 256 possible val-
ues. An RGB triplet is chosen as the target color. Each pixel
�channel� intensity in the image is then compared to the ini-
tial triplets R0 ,G0 ,B0 �hereafter RGB0�, and the Euclidean
distance �or color radius� is calculated,

RRGB = ��R0 − Rpix�2 + �G0 − Gpix�2 + �B0 − Bpix�2. �9�

Figure 1 shows the filtered pattern for 	RGB=20 for image
P02. Patterns are isolated by including pixels for which
RRGB
	, a cutoff whose value is determined by examination
of the RGB histogram for the color in question. Figure 2
shows the R ,G, and B pixel intensity histogram for the
“black” pigment of image P04, which is generally of the
same form for all images considered herein. The peaks of
each correspond roughly to the values �R ,G ,B�
= �21,17,21�, which is taken as the target color RGB0. Note
the smooth drop-off for increasing �and decreasing� values of
the pixel intensities.

For the paintings considered, it was found that most RGB
histogram spreads tend to extend no more than 5–20 pixel
intensities from the central peak. Hence, it seems reasonable
to assume that the cutoff 	 should be between 	� �10�3
−20�3���10,40�.

The pseudonormal nature of the distribution in Fig. 2 sug-
gests that a Gaussian filter, which weights colors according

to their distance from the “target,” would be more appropri-
ate than the cutoff filter considered presently. This type of
filter is inappropriate for calculation of the box dimension,
for which any box is counted in which there exists a point in
the allowable range �i.e., this would result in a severe over
count of boxes�. However, a “weighted” information dimen-
sion is certainly feasible, in which one assigns the color
match a value of exp�−RRGB

2 /a2�, with a2 the full width at
half maximum �FWHM� corresponding to the average histo-
gram spread. This filter would be better exploited in the mul-
tifractal analysis of Sec. VII. However, preliminary calcula-
tions suggest that the results will not vary significantly from
those of the cutoff method described herein. Since the very
notion of color distance discrimination itself is somewhat of
a fuzzy area �see, e.g., �28� or similar references�, it is best
not to “overcomplicate” the procedure at this given stage of
development. Thus, only the cutoff will be used in this study.

IV. BOX AND INFORMATION DIMENSION OF JACKSON
POLLOCK’s WORK

As previously mentioned, the information dimension can
be considered a better statistic for the study of recursive pat-
terns. That is, the box dimension can sometimes provide an
overestimate of the scaling behavior, since it does not ac-
count for the relative density of points within the box. Al-
though these specific results have been reported in �10�, a
slightly different analysis of the findings was given in that
reference. What follows will be a more technical discussion
of the results.

Table II presents the corresponding dimension estimates
for each painting. The box dimensions calculated by a least-
squares regression on the data points seem to provide good
agreement with the results cited in �4�, which found, e.g.,
D0=1.67 for P02 and 1.72 for P01. This suggests that a value
of 	� �20,30� would be in rough agreement with their analy-
sis.

However, closer inspection of the results of Table II re-
veals that in certain cases the estimate of the dimension is
critically dependent on a correct choice of 	: the darker col-
ors appear more stable, while the lighter ones show wider

FIG. 1. Black-pigment-filtered image P02, 	�20.

FIG. 2. Pixel count Npx histogram for black pattern of P04,
showing peaks at �R ,G ,B�= �21,17,21�.
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variation. In order for this analysis technique to be useful,
these selection criteria must be extremely well defined. Oth-
erwise, the results risk becoming meaningless. Ideally, some
kind of variance in choice of 	 should be incorporated into
the overall error estimate. The issue of color space selection
is discussed in Ref. �29�.

As mentioned in the previous section, the authors noted
an apparent break in the slope of the log-log plot and as-
sumed that this represented different scaling behavior of two
different mechanisms. The shallower slope was taken to be
representative of Pollock’s painting technique. In fact, in
Ref. �30�, the author discusses the association of two distinct
dimensions based on the topological morphology of the frac-
tal �for higher length scales�, as well as its texture �lower
scales�. These two dimensions are appropriately labeled as
those of the structural fractal and textural fractal, respec-
tively. Relating to the work of �4�, it is not unreasonable to
interpret their two dimensions accordingly—i.e., the overall
“structure” of the painting at higher length scales and the
fine-grained refinement at lower scales.

The fits in Fig. 3 show box and information sample plots
for P02 with 95% confidence level curves from the least-
squares fit. The information dimension D1 is shown as a
“refinement” of D0 behavior. The data provide a very clean
linear fit in both cases, generally better for the information
dimension D1, albeit not significantly �r2

=99.9% vs 99.8% �. Similar behavior is observed for the
other images.

It should be stressed again that this is not inconsistent
with the two-slope result of Taylor et al., since the scale
range in Fig. 3 lies above the transition LT from DL to DD.
Thus, even if the last point in the plot were to find its “po-
sition” governed by the DD slope, the confidence level curves
would not show any statistically significant deviation from
DL.

Thus, the results of the present analysis provide a good
agreement with those of Taylor et al. That is, one can asso-
ciate an effective fractal dimension in the range D0
�1.6–1.8 with the patterns on the paintings. Although a
changing slope from box counting does not immediately im-
ply multifractal behavior, it will be demonstrated in the re-
mainder of this paper that the paint patterns do possess such
a rich structure. It will be the nature of this multifractality
that can serve as an alternative authentication method for
certain types of paintings.

There does not seem to be significant variation in dimen-
sions between lighter and darker colors, although in certain
cases it is observed that the lighter pigment patterns tend to
exhibit lower fractal dimensions. This could be due to a dif-
ferent deposition mechanism than simple dripping, as well. It
is perhaps a sweeping generalization to assume that all the
pigments were applied in exactly the same fashion.

Since each pattern can possess a unique fractal dimension
�albeit within the range noted in �8��, it becomes an interest-
ing question of whether or not one can define the “dimen-
sion” of the entire image. This suggests an application of the
fractal union theorem, see, e.g., �24�. Since the fractal dimen-
sion of the union of fractals �Fi has dimension maxDi�,
then the fractal dimension of the entire image will corre-
spond to that of the most complex pattern. Thus, isolation of
the pattern with the highest dimension can be interpreted to
characterize the fractal nature of the entire image. In fact,
this is consistent with the notion of the “anchor layer” dis-
cussed in Ref. �4� �i.e., the pattern which seems to strongly
influence the dimension of the whole image�.

V. ROBUSTNESS OF ANALYSIS METHOD

The exact determination of the fractal dimensions de-
pends on the cutoff for the colors under consideration. Thus,
there is a certain amount of variability in the estimation. To
test for further variability �and hence potential limitations of
the box counting method applied to such images�, P01, Re-
flections of the Big Dipper, and Number One 1949 were each
rotated by 90°, and the corresponding box and information
dimensions were calculated for a color radius of RRGB
=20 pixels:

�i� Blue Poles: D0=1.68±0.03, D1=1.65±0.02,
�ii� Reflections,…: DB=1.77±0.04, DI=1.72±0.03,
�iii� Number One 1949: DB=1.73±0.05, DI=1.70±0.04.
These are quite commensurate with the values obtained in

Table II, subject to the cited error, confirming the rotational
invariance of the result.

Pixels are randomly displaced by 5, 10, and 20 positions
from their original location, and the appropriate dimensions

TABLE II. Box �D0� and information �D1
43� estimates for select

Jackson Pollock paintings.

Fit 	=10 20 30

P01 �black�
D0 1.51 �0.05� 1.68 �0.03� 1.72 �0.03�
D1 1.46 �0.02� 1.63 �0.02� 1.67 �0.02�
P01 �red�
D0 1.33 �0.07� 1.54 �0.05� 1.64 �0.04�
D1 1.22 �0.03� 1.42 �0.02� 1.54 �0.02�
P02 �black�
D0 1.66 �0.03� 1.70 �0.03� 1.72 �0.03�
D1 1.66 �0.02� 1.70 �0.02� 1.72 �0.02�
P03 �black�
D0 1.73 �0.06� 1.80 �0.05� 1.84 �0.04�
D1 1.64 �0.05� 1.72 �0.04� 1.76 �0.03�
P04 �black�
D0 1.70 �0.05� 1.77 �0.04� 1.81 �0.04�
D1 1.67 �0.03� 1.73 �0.03� 1.77 �0.03�
P05 �black�
D0 1.72 �0.04� 1.77 �0.04� 1.80 �0.03�
D1 1.65 �0.03� 1.70 �0.02� 1.74 �0.02�
P06 �blue-grey�
D0 1.64 �0.06� 1.73 �0.05� 1.78 �0.04�
D1 1.60 �0.05� 1.68 �0.04� 1.73 �0.03�
P06 �cream�
D0 1.52 �0.10� 1.71 �0.06� 1.76 �0.04�
D1 1.49 �0.08� 1.65 �0.05� 1.70 �0.04�
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are again calculated for the same paintings. Table III shows
the results for the same paintings as above.

VI. FRACTALS IN GESTURAL EXPRESSIONISM

If the patterns which appear in these paintings truly are
the product of physical processes, rather than pure artistic
expressionism, then such a structure should be visible in
similar works by other artists. Based on the similar analysis
to that of Ref. �11�, it seems reasonable that other images
formed by similar processes should be classifiable by similar
statistics.

Roughly contemporaneous with Jackson Pollock, the
Québec School Les Automatistes also produced nonrepresen-

tational art not unlike the drip paintings studied above. The
group was spearheaded by Jean-Paul Riopelle and Marcel
Barbeau who collectively produced their works over the 35-
year period spanning 1945–1980.

Figure 4 shows a section of a drip painting from Les
Automatistes, as well as the filtered black pigment pattern.
Table IV lists the calculated box and information dimensions
for select works by Les Automatistes, subject to the same
selection criteria as before.

As with Pollock’s drip works, the dimensions of the pat-
terns fall roughly between 1.6 and 1.8. The box and infor-
mation dimensions do not explicitly differentiate between
Pollock’s work and that of Les Automatistes. In fact, the
difference in the average fractal dimensions for each artist
was shown to be statistically insignificant using a two-way
analysis of variance �ANOVA� in Ref. �10�. The lighter col-
ors display mildly lower dimensions than the darker pig-
ments, although this may be due to cutoff limitations of the
filtering process. Similar behavior was observed in the im-
ages by Pollock, so whether or not this is an actual artifact of
the pattern or a numerical effect is a subject for future inves-
tigations.

While this was somewhat the case with Pollock’s works,
there are perhaps sufficient discrepancies to suggest that such
a measure could be indicative of different uses of colors and
techniques between these artists. This includes using lighter
colors for balance in an image versus their use for adding
contrasting depth.

FIG. 3. Sample log-log �base 10� fits used to
determine box and information dimensions for
P02, 	=20.

TABLE III. DB �top row� and DI �bottom row� measurements
for random pixel displacements of 5, 10, and 20 pixels. Error �in
brackets� is than of the least-squares fit.

Painting 	=5 10 20

Blue Poles 1.70 �0.03� 1.72 �0.02� 1.75 �0.02�
1.65 �0.02� 1.67 �0.02� 1.71 �0.02�

Reflections 1.81 �0.03� 1.84 �0.03� 1.87 �0.02�
1.76 �0.02� 1.79 �0.01� 1.84 �0.01�

Number One 1949 1.76 �0.04� 1.79 �0.03� 1.82 �0.03�
1.72 �0.02� 1.75 �0.02� 1.80 �0.01�
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In any event, the general equivalence of the dimensions of
Pollock’s works and those of Les Automatistes suggests that
the utility of this technique as a “fingerprinting” mechanism
for individual artwork-artist association may be in vain. As
with the galaxy clustering models, one could assert that the
technique can isolate only construction method and not
structural variation within the method. Those who are dis-
suaded by the effective reductionist implications of the
analysis may find comfort herein. In order to further address
this point, the multifractal analysis will be addressed in Sec.
VII.

VII. MULTIFRACTAL SPECTRUM OF NON
REPRESENTATIONAL IMAGES

Figure 5 shows the range of generalized dimensions Dq
for these patterns. Note that the overall depth of the general-
ized dimension spectrum is not excessive, suggestive that if
these patterns can be described by multifractal statistics, their
overall structure is not that extensive. Furthermore, note that
for the majority of the cases considered, there is no appre-
ciable difference in the range or shape of the spectrum. The
errors from the linear fits are generally of the order 0.05 or
less, but these may be underestimates since no error is intro-
duced for variation in the color. The limiting values of D�

give less intuitive insight into the densest clustering regions,
unlike in the case of the three-dimensional sets considered
earlier.

Table V shows inhomogeneity measure for several Pol-
lock and Automatistes works, defined by Eq. �8�. In general,
the results suggest that Pollock’s works tend to be “deeper”
than those by the Automatistes �i.e., greater degree of inho-
mogeneity�, perhaps a result of painting styles and refine-
ment techniques. This could hint at a potential method of
distinction for the sets of similar classes, but one must be
extremely cautious of the selection criteria for the pattern in
question. It is more likely that these measurements are sim-
ply too “noisy” for any useful approximation.

VIII. COMPARISON OF CONSTRUCTION METHOD:
GESTURAL EXPRESSIONISM VERSUS ARTONOMY

The utility of the analysis methods contained herein
seems limited in the context of analysis of differing works of
the abstract expressionist class. For the cases considered, the
variance in the data seems too small to be of any particular
import for specific identification. However, when applied to
other images, certain differences do arise, enabling one to
make distinctions at least on some level.

FIG. 4. Sample of Les Au-
tomatiste painting and black pig-
ment pattern �image A05�.

TABLE IV. D0 and D1 for various Les Automatistes images,
	=20.

Image D0 D1

A01 �black� 1.92 �0.01� 1.88 �0.01�
A02 �black� 1.66 �0.05� 1.61 �0.03�
A02 �blue� 1.67 �0.07� 1.60 �0.01�
A03 �black� 1.69 �0.03� 1.66 �0.01�
A03 �blue� 1.61 �0.06� 1.56 �0.04�
A04 �black� 1.57 �0.07� 1.54 �0.05�
A04 �blue� 1.61 �0.07� 1.53 �0.04�
A05 �black� 1.63 �0.03� 1.61 �0.02�
A05 �green� 1.57 �0.05� 1.47 �0.02�
A06 �black� 1.73 �0.05� 1.65 �0.02� FIG. 5. Multifractal dimension spectra for select images of

Table I. Error bars are suppressed for easy viewing.
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In particular, the artwork of Avital �12� will be consid-
ered. In his seminal work on the subject �12�, Avital intro-
duces the concept of artonomy, the focal blend of artistic
expressionism with scientific order. A complete description
of the intricacies of the method will not be discussed here,
and the interested reader is referred to the aforementioned
citation for further details. The crucial point is that the con-
struction “philosophy” for these images is strictly different
than those of the gestural expressionist class considered pre-
viously.

Avital notes that the concept of artonomy is based on
certain principles of “isotropy” in the creation process. There
are no preferred sets of colors, and the use and applications
of each color are deemed “equal” in value to every other.
Colors �or elements� are combined into a variety of rigor-
ously defined mathematical sets �dubbed “moments”�, and
the final paintings are constructed from combinations of
these moments subject to the appropriate rules. Paints are
applied in a simple manner �e.g., controlled brush or “tooth-
brush spray”�, and as with the color selection, there is no
preferred method.

The moments are methodically positioned on the canvas
in a recursive fashion quite reminiscent of the basic structure
of multifractals �such as, for example, the framework out-
lined in Fig. 6�. Of particular interest is Avital’s “type-�”
moment construction rule �12�, which operates on the basis
of information density on the canvas. Here, he defines the
density as low when like colors or hues are assembled �ho-

mogeneous elements� and high with the neighboring place-
ment of contrasting elements �heterogeneous elements�. Avi-
tal defines an abstract field as one which is comprised of
low-density regions and a concrete field as one composed of
high-density regions. Abstract and concrete fields may be
inter mixed to form heterogeneous fields. Images AV01-03
represent “homogeneous” constructs, while AV04-06 are
“heterogeneous.”

So, in a sense, comparison of gestural expressionist
“structures” with those of Avital constitutes a contrast in con-
struction methodologies—random versus algorithmic—and
thus Avital’s works can be taken to be a control or model
comparison.

Table VI shows measured generalized multifractal dimen-
sions for various color distributions in Avital’s works. It is
somewhat difficult to define an exact base color in the ho-
mogeneous images �AV01-03�, since the resulting pattern is
due to integrated “aerosol” deposition. In any event, note that
unlike the Pollock and Automatistes images, Avital’s works
show no significant multiscaling behavior. In many cases,
the calculated D� is higher than D0, yielding a negative �0,�.
It should be noted that similar behavior was observed for
some monofractals and simple geometric shapes �i.e., objects
for which there is a single scaling dimension�, where the Dq
for small q tend to underestimate the actual dimension. Also,
if one considers the associated statistical error, then these
negative values are easily accounted for. Thus, it can be con-
cluded that Avital’s systemic blobs are devoid of the “rich”
structure with which the gestural expressionists endow their
works, due perhaps in part to the very algorithmic �less ran-
dom� nature of the construction.

Furthermore, Avital’s homogeneous works �e.g., AV01�
were constructed from the spray of a paint from a toothbrush.
Thus, the resulting structure is probably similar to the depo-

TABLE V. Inhomogeneity measure �D0,�=D0−D� comparison
between Jackson Pollock paintings and Les Automatistes works for
anchor layers �	=20�.

Painting D0 D� �D0,�

P01 1.68 �0.03� 1.45 �0.05� 0.23 �0.06�
P02 1.70 �0.03� 1.54 �0.04� 0.16 �0.05�
P03 1.80 �0.05� 1.47 �0.03� 0.33 �0.06�
P04 1.77 �0.04� 1.60 �0.04� 0.17 �0.06�
P05 1.77 �0.03� 1.55 �0.05� 0.22 �0.06�
A01 1.92 �0.01� 1.85 �0.03� 0.07 �0.03�
A02 1.66 �0.05� 1.53 �0.05� 0.13 �0.07�
A03 1.68 �0.03� 1.62 �0.05� 0.06 �0.06�
A04 1.57 �0.07� 1.34 �0.05� 0.13 �0.09�
A05 1.63 �0.03� 1.60 �0.07� 0.03 �0.08�

FIG. 6. Multifractal scaling behavior, show-
ing a one-level reduction of distribution with pro-
bilities r1 , r2 , r3, and r4.

TABLE VI. Generalized dimensions for selected Avital images.
Image sources are identified by plate number from �12�.

Painting D0 D� �0,� Color

AV01 �XI� 1.56 �0.03� 1.51 �0.08� 0.05 �0.09� Grey-green

AV02 �XIII� 1.68 �0.03� 1.71 �0.05� −0.03 �0.06� Yellow

AV03 �XV� 1.61 �0.02� 1.60 �0.09� 0.01 �0.09� Blue

AV04 �III� 1.45 �0.03� 1.38 �0.07� 0.07 �0.08� Red

AV05 �VII� 1.71 �0.02� 1.82 �0.07� −0.09 �0.07� Black

AV06 �VIII� 1.57 �0.04� 1.43 �0.09� 0.14 �0.10� Yellow
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sition from an aerosol source. The dimensionality most likely
reflects this mechanism, to a certain extent. Avital’s hetero-
geneous works �AV11, AV12� were constructed with con-
trolled paint brush strokes. So these could actually be con-
sidered two separate subconstruction mechanisms.

IX. RECONSTRUCTING IMAGES
FROM THE MULTIFRACTAL SPECTRA

Accurate determination of the multifractal spectra of sin-
gularities for a dynamical process can yield important infor-
mation about its construction processes and associated con-
straints. As previously mentioned, the Dq provide important
information about the n-tuple “pairwise” clustering behavior
of the set and provide a unique characterization of the object
under investigation.

The quantities thus obtained can be used as physical con-
straints to be used in development of any model and can
perhaps yield interesting information about the dynamics of
the pattern generator during the construction phase. Since the
multifractal analysis herein seems only to have the ability to
discern one class of structure from another, one must ask
whether or not there is a useful tool to distinguish between
like sets. A short analysis is performed herein on the like
image arrays of the abstract expressionist class in order to
address this problem.

By definition, a multifractal is an inhomogeneous recur-
sive scaling �a multifractal lattice�. Suppose a square �or box,
to be consistent with the current nomenclature� is divided
into four subunits of equal area. Then, one can describe the
relative portion of the pattern contained in each box by the
probabilities r1 , r2 , r3, and r4, respectively �see Fig. 6�.

At the next level of recursion, the weights ri are randomly
reassigned to each subbox of the previous layer, and the pro-
cess repeats �cascades� down to any level of recursion de-
sired.

Recall that the generalized dimensions are calculated
from the partition function �5�, and furthermore �q−1�Dq

=��q�. From Eq. �7�, one can estimate the difference between
two successive cut scales � and � /2 �c.f. Fig 6� as

Dq�q − 1� = ��q� =
� ln�Z�q,���

� ln���
. �10�

In terms of the probability ri for each box, this becomes

� ln�Z�q,���
� ln���

=

ln��
i

ri
q	 − ln��

j

rj
q�

k

rk
q	

ln��� − ln��/2�
, �11�

which reduces to

Dq�1 − q� =
ln�Z�q,���

ln�2�
. �12�

So one can substitute Z�q ,��=r1
q+r2

q+r3
q+r4

q to obtain

r1
q + r2

q + r3
q + r4

q = 2Dq�1−q�, �13�

and the distribution probabilities ri may be obtained from a
system of four equations. Note that this expression may be

simplified by noting the constraint r1+r2+r3+r4=1. Further-
more, the q=2 version of Eq. �13� represents the equation of
a four-sphere, whose roots may be easily obtained.

Hence, the system of four equations may be reduced to a
system of two unknowns, in this case r3 and r4. The values of
the four possible ri may be isolated by optimizing the pos-
sible values of r3 and r4 which fit the measured Dq spectrum
of generalized dimensions. This is achieved by finding sets
of ri for which the individual separations �Di=Dcalculated
−Dmeasured�� for ��0.0001 on average.

In Table VII, the ri values for various shapes of known
monofractal dimension are presented. Note that for a figure
of topological dimension DT=1 �e.g., the line�, the weighting
factors suggest that for the appropriate cut of the plane in
Fig. 6, the shape will only have a nonzero probability of
being in any two of the four sub boxes, a result which cer-
tainly makes sense. Similarly, a figure of dimension DT=2,
which “fills the plane,” will have equal probability of being
in every box. The negative component for the Koch curve
�island� is most likely the result of numerical uncertainty,
since negative probabilities would not make sense. The cal-
culated ri’s for the Koch curve and Sierpinski gasket can also
be interpreted to reflect the construction algorithms and sym-
metries for each figure.

Table VIII lists the calculated values of ri for the “anchor
layer” pigment shapes in several of the images considered
previously. The values are relatively consistent for each
painting, although this is not a particularly surprising result,
since the Dq spectra themselves are not significantly differ-
ent.

Each set is characterized by a rather even distribution
among three of the boxes and a fourth which is smaller by an

TABLE VII. Distribution probabilities ri for various Euclidean
shapes and geometric fractals.

Shape DF r1 r2 r3 r4

Line 1.00 0.00 0.50 0.00 0.50

Plane 2.00 0.25 0.25 0.25 0.25

Koch island 1.26 −0.05 0.44 0.18 0.43

Sierpinski gasket 1.57 0.00 0.34 0.32 0.34

TABLE VIII. Select distribution probabilities ri for various
Jackson Pollock and Les Automatistes works �anchor layers�.

Painting p1 p2 p3 p4

P01 0.03 0.27 0.30 0.40

P02 0.04 0.32 0.32 0.32

P04 0.06 0.32 0.29 0.33

P05 0.03 0.34 0.29 0.34

P06 0.03 0.30 0.29 0.38

A01 0.12 0.30 0.29 0.29

A02 0.02 0.38 0.26 0.34

A03 0.03 0.33 0.32 0.32

A04 0.01 0.41 0.36 0.22

A05 0.01 0.33 0.33 0.33
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order of magnitude. The almost homogeneous distribution is
no doubt reflective of the fact that the generalized dimen-
sions are close to 2. It can be shown that for a distribution
with ri=0.25 for all i, the generalized dimensions all collapse
to 2 �or vice versa�.

It may be somewhat discouraging to note that these values
are rather close to one another and are seemingly indistin-
guishable. However, it should be noted that the formalism
outlined above is not a singular representation of a multifrac-
tal scaling process. Four quadrants have been used to show
recursive scaling in part for computational efficiency. This
could be a significant source of error if the scaling behavior
is radically different than this model requires. Additionally,
this may again be a fundamental problem with the resolution
limitations of the method.

The parameters herein can conceivably be used in the
formulation of a physical model which could reproduce the
associated images, at least on a statistical level. Furthermore,
the authors of �5� have studied video recordings of Jackson
Pollock in his creative process and have found that the “frac-
tality” of the overall work took less than a minute to define.
Surely, this provides an additional constraint on such a cas-
cading model.

On a subjective level, one wonders whether or not the
smaller fourth quadrant could conceivably be interpreted as
an imprint of the presence of the “source” of the image pat-
tern �in this case, the physical presence of the artist�. That is,
at any point during the construction of the painting, the artist
has free choice to paint in three of the four “quadrants” �the
last being occupied by himself�. Thus, this could be nested in
the recursion and detectable by such an analysis. If this ex-
planation were to accurately represent the evolution of the
pattern, it could be used to distinguish between patterns con-
structed by humans and those created by machines or other
natural processes.

X. VISUAL MULTIFRACTALS

The analysis in the previous sections relied predominantly
on a color filtering process dependent on the distance in RGB
space of pixel color to its target “match.” However, many
reports suggest that the hierarchical clustering of the images
has some variety of psychological effect on the viewer.
While using RGB primaries as the filtering criteria isolated
the physical structure of the blob, it may not be an effective
measure of the perceived structure. Taylor et al. have re-
cently studied physiological responses to fractal viewing and
have concluded that observers do exhibit definite responses
when presented with certain fractal patterns �7,6�.

The problem of structure identification and discrimination
is not a new one in psychological circles; nor is it by any
means a solved one . Implicitly related to this topic, the
authors of Ref. �30� discuss the perceptibility of hierarchical
structures in abstract or nonrepresentational constructs
�whose subject matter is used in a comparative study in Sec.
VIII�. In fact, rapid object recognition and categorization via
boundary isolation versus “blob” identification is a subject of
growing scientific interest �see �31� and related references
therein�.

A complete understanding of the nature of color percep-
tion is still lacking. Thus, the notion of a visual fractal is
introduced in contrast to those fractals previously consid-
ered. Instead of direct observation of colors, the focus is
instead shifted to edge structures. This is effectively an
analysis of luminance gradients within the image and not
directly on the RGB color field distribution �although the
luminance values are determined by R ,G, and B mixes�. In
fact, after completing this research, the work of Ref. �32�
was discovered. Therein, the authors discuss the potential
uses of measuring the multifractal spectrum of luminance
gradients in natural color images to determine whether or not
it conveys relevant information about the image. The analy-
sis presented herein is quite similar in these respects and thus
is not performed without physical justification.

A. Luminance edges as visual fractals

While ripe with theory, the actual dynamics of human
color visual processing is poorly understood, yet it is clear
that one does not require a wealth of color information to
visualize a scene. A subject of ongoing interest �see, e.g.,
�33� and similar references� is whether or not object-pattern
recognition occurs on the level of “blob” or “edge” identifi-
cation. Studies of eye moments in subjects viewing artistic
scenes seem to support the notion that humans fixate on par-
ticular aspects of an image, supporting the notion that
“blobs” are viewed �34�, but it is perhaps unclear as to how
these objects are distinguished.

Similarly, the images formed by one’s brain may not be
fully representative of the scene which one views. Both chro-
matic and achromatic information received from stimulation
of the photopigment receptors in the rods and cones are “pre-
processed” before being sent to the visual cortex via the op-
tic nerve.

In a similar vein, it is useful to find a “one-parameter”
method of analysis for such color images as an attempt to
find a suitable way to discriminate between them. The results
of the previous sections suggest that different choice of col-
ors yields somewhat differing dimensions, so it would be
helpful to find an element common to all images which is
independent of any particular color. Thus, one can consider
analyzing the luminance properties of the image.

Edge detection in the visual system occurs on several dif-
ferent levels, although it is not necessarily known which one
is “dominant.” One such mechanism is known as lateral in-
hibition �LI�. In short, this process measures the relative ex-
citatory signal output from one photoreceptor with inhibitory
signals from adjacent neighbors, effectively producing a dif-
ference output signal which is sent to the visual cortex. The
result is that the strongest excitatory signals will be sent from
those retinal neurons which detect luminance changes across
the field �28�.

Coupled to the visual system’s ability to interpolate infor-
mation in a field from missing stimuli �e.g., as with the blind
spot�, LI can create artificial luminance and brightness varia-
tion effects which are not physically present in the original
scene �28�. For example, a black and white checkerboard
will seem to have gray scale variations across the pattern.
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The intensity �luminance� of the central squares is the same
in each case, but the square surrounded by white appears to
be darker than the other �see Fig. 7�. This exemplifies the
eye’s ability to create artificial variations in scenes which are
otherwise not physically present. Hence, this provides a
rather simple example of how visual interpretation of an ob-
ject may not be completely commensurate with the actual
physical characteristics.

Lateral inhibition is, however, only one of several mecha-
nisms responsible for the detection of contrast edges in a
visual field. While LI mechanisms operate in the eye, such
detection is known to occur in the visual cortex itself. Hubel
and Wiesel were responsible for the discovery of “orientation
columns” within the visual cortex, cells responsible for the
identification of specific edges or boundaries orientations.
The aforementioned researchers share the 1981 Nobel Prize
in Medicine for their research efforts. The interested reader is
directed to Ref. �35� for an expository account of their work.
Thus, there is sufficient physiological and psychological mo-
tivation to consider possible structural differences in contrast
edges.

The transformation from RGB primaries is of the form
Y =0.299R+0.587G+0.114B �36� �note that the color coor-
dinates must be normalized�, which implies pure white coor-
dinates �R ,G ,B�= �1.0,1.0,1.0�. Note the relatively higher
weighting of R and G primaries to B. This is reflective of the
eye’s sensitivity to similar wavelength intensities. In fact,
these roughly correspond to the three basic types of cone
cells with similar thresholds, denoted as L, M, and S �for
long, medium, and short wavelengths�. This is actually one
component of a separate CIE color system known as YIQ
�the channels I and Q are encoded chromacy information,
hue, and saturation�. The luminance channel is what one gen-
erally associates with gray scale images and in fact is that
information which is transmitted in black and white televi-
sion signals �36�. Edge detection is performed by generally
available image manipulation tools, which measure the vec-
tor sum of two perpendicular Sobel gradient operators �see
e.g., �37� for more information�.

These are perhaps crude approximations to the actual
physiological processes at hand, so implicit limitations in the
estimates should be accordingly recognized. Certainly, the
method does not purport to be a realistic model of the visual
system. It should, however, provide a decent first-pass ap-
proximation to any inherent structures and effects therein.

B. Pollock vs Les Automatistes

Figure 8 shows a sample edge-detect transform for images
of Pollock and Les Automatistes, with the associated Dq
spectra in Fig. 9. For the color-filter process, the target color
in this case is pure white and the color radius is taken to be
the linear distance away from the point. Thus, for a small
radius, the images with the highest gradients will have the
largest dimensions. Tables IX and X give dimensions for
both 	=1 and 	=30, which give an indication of the “value”
of the strongest gradients. It should be noted that since neu-
ronal firings are triggered by threshold-breaking stimuli, a
discrete cutoff is more realistic than a Gaussian drop-off.

The calculated box dimensions for the edge-detected Pol-
lock images tend to be higher than for the individual blobs,
generally D0�1.8. This can be interpreted as implying that

FIG. 7. Black and white chekerboard pattern �“Hermann grid”�
showing visual luminance structure variation due to edge enhance-
ment effects in the visual processing system.

FIG. 8. Sample luminace gradients for P02 �top� and A05
�bottom�.
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the luminance edges form a much more complex visual field
and that the edge lines are more “space filling,” providing a
“busier” or “fuller” visual experience.

When the method is applied to the gestural expressionist
works of Les Automatistes, differences become more appar-
ent �see Fig. 9�. The box dimensions for Les Automatistes
are generally lower �albeit not much� than those of Pollock’s.
Similar results are obtained for other images �see Table IX�.
Note that the measured dimensions do not increase signifi-
cantly from 	=1 to 	=30.

This suggests that there is a potential visual difference
between images by these different artists. While the final
products may resemble each other at first glance, the intrica-
cies of the two images from a luminance gradient and visual
standpoint appear quite different. Again, in Ref. �10� the dif-
ference in average fractal dimension of the “edge” patterns
was determined to be statistically significant.

Based on the work of previous authors �38� and their own
survey on preferential response to drip patterns, the authors
of �6,7� conclude that patterns possessing a fractal dimension
of roughly 1.3–1.5 are inherently aesthetically pleasing to the

observer. A prior study suggests that “creative individuals”
have a preference for high values of D �39�. The discrepancy
between the two dimensions and the notion of aesthetic in-
terest is not explained by these analyses, but is proposed to
be an instantiation of the “peak shift effect” �see Ref. �40��.
This is a documented aspect of behavioral psychology in
which pleasing characteristics are enhanced to create a more
profound impact on an observer. In this case, the “pleasing”
element is the moderate fractal dimension and the peak shift
is toward the higher dimension values. One could imagine
that this type of perceived structural difference could contrib-
ute to an observer’s “appreciation” of one image or style
over another.

C. Comparison with Avital

Avital’s definitions of homogeneous and heterogeneous
fields �not to be confused with homogeneous fractal distribu-
tions�, along with the concept of information content, are a
natural extension of the notions of luminance gradient struc-
tures proposed in Sec. X A. In fact, the very notion of infor-
mation content is at the heart of the multifractal formalism.
Thus, a luminance-gradient analysis of Avital’s images
should reveal certain properties about the formulaic con-
struction of the pieces or at the very least lend contrast to the
more psychological algorithms used by the abstract expres-
sionist artists �or perhaps any other artist�.

Table X shows the effective edge-detection dimensions of
various works by Avital �12�, as well as a rough definition of
the type of image. Figure 9 shows the associated spectra in
comparison to the previous images. Since reproduction of
every image in this work is not warranted, the previous color
panels demonstrate the general qualities of each type of im-
age �labeled homogeneous and heterogeneous�, while Fig. 10
shows the resulting luminance gradients. It should be noted
that the images classified as “homogeneous” all conform to
Avital’s “S/D/�” construction algorithm �made from the
spray of a toothbrush� �12�, which indeed embodies an in-
herently smooth transition to complexity in relation to color
selection and application. In contrast, the images noted as
“heterogeneous” are from Avital’s “S/C/�” algorithm,
which allows for a counterbalance between abstractness and
concreteness. These are simply painted with controlled brush
strokes.

The lower dimensions and higher error for the homoge-
neous images in Table X demonstrate the low-color-contrast

TABLE X. Effective edge dimensions for selected Avital images
for gray scale distance 	=1, 30. Image sources are identified by
plate number from �12�.

Painting D0�	=1� 	=30 Type

AV01 �XI� 0.00 �0.00� 0.00 �0.00� Homogeneous

AV02 �XIII� 0.00 �0.00� 0.00 �0.00� Homogeneous

AV03 �XV� 0.00 �0.00� 0.08 �0.05� Homogeneous

AV04 �III� 0.68 �0.03� 0.83 �0.04� Heterogeneous

AV05 �VII� 0.95 �0.05� 1.04 �0.05� Heterogeneous

AV06 �VIII� 1.28 �0.03� 1.37 �0.04� Heterogeneous

FIG. 9. Dq spectra for luminance gradients of Pollock, Automa-
tistes, and Avital images �	=1�. The structures are clearly separated
by D0 values, although the overall strucutre of the curve is similar.

TABLE IX. Edge dimensions for selected Pollock �top� and Au-
tomatistes �bottom� images, showing higher complexity of lumi-
nance gradient patterns for gray scale distance 	=1, 30.

Painting D0�	=1� 	=30

P01 1.76 �0.03� 1.78 �0.03�
P02 1.90 �0.02� 1.90 �0.02�
P04 1.89 �0.02� 1.90 �0.01�
P05 1.81 �0.04� 1.84 �0.02�
P06 1.85 �0.03� 1.87 �0.02�
A02 1.54 �0.09� 1.55 �0.05�
A03 1.67 �0.05� 1.72 �0.04�
A04 1.67 �0.05� 1.71 �0.04�
A06 1.56 �0.07� 1.64 �0.06�
A07 1.75 �0.06� 1.80 �0.04�
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nature of the images and hence the shallow depth of lumi-
nance variation across the canvas. In particular, note that
while image AV01 is physically a mix of bright pigments,
there is virtually no strong luminance gradient across the
canvas �hence to effective dimension of 0�. These dimen-
sions imply that there is little “luminance information” in the
fields. As the images begin to approach heterogeneity, the
background field is contrasted with patches of color, whose
overall boundaries are quite regular. This is indicative by the
relatively low range of D0=1.1–1.3, in contrast to the ex-
ceedingly high dimensionality of the gestural expressionist
paintings, as seen in Table IX. The latter is indicative that the
luminance gradients densely fill the canvas for this particular
school or movement, while Avital’s shapes are more concen-
trated and simple.

Thus, Avital’s homogeneous work is less “interesting”
from an edge detect view than the Pollock or Les Automa-
tistes images considered �there is less edge information con-
veyed about the scene�, while the heterogeneous work brings
focus to particular objects via these edges �although still with
much lower dimension that the gestural expressionist im-
ages�.

These results suggest that this analysis method could dis-
tinguish between sources, as well as construction mecha-
nisms of the images. Further investigation would be re-
quired. However, whether or not this type of distinction is
possible, identification of such structural signatures could
have applications in external fields. For example, albeit be-
yond the scope of physics, visual detection of fractal struc-
ture in luminance gradients could have profound conse-
quences for the fields of aesthetics and visual appreciation of
complex scenes �e.g., what qualities makes an image inter-
esting to us?�.

It is interesting to note that Avital himself classified works
such as Pollock’s as “moment type ,” whose paradigm rests
on the notion of “arbitrariness,” in which the combinations
of elements �moments� are scattered at personal will about
the canvas �he further notes these to require “minimal capac-
ity of inventiveness” and casts Pollock’s art as containing
nothing meaningful or interesting �12��. Avital is careful to
note the distinction between “arbitrariness” �whose choice of
elements is human� and “randomness” �whose source is in-
stead probabilistic�. Unfortunately, Avital presents no simu-
lations of type , so it is not possible to compare these with
the works of the gestural expressionists considered previ-
ously.

XI. POTENTIAL LIMITATIONS OF THE METHOD

Of course, the method described herein is not without
limitations and is only designed to be a “first-order” attack of
the issues at hand. As discussed previously, digital image
analysis techniques provide a statistical description of the
entire physical image, with no regard for perceptual interpre-
tations by observers. The calculated dimensions assumed
equal weighting for all portions of the canvas, when in fact
�depending on the distance from which they view the scene�
observers will not register all portions of the field equally.
Both rod and cone cells are unevenly distributed about the
retina, with a disproportionately large number of cones clus-
tered in the fovea centralis �28�. This cone clustering is cru-
cial for perception of color and fine visual detail via fixation
and is the primary reason for the drop in acuity in peripheral
vision.

So, if the image of interest fills the visual field, only the
central-most regions will convey the largest amount of infor-
mation. However, this should not necessarily affect the over-
all “visual estimation” of the fractal nature of the piece, al-
though edges may become more blurred �resulting in
potential shifts in a “visual multifractal spectrum”�. Further-
more, the method does not account for other biasing effects
such as color blindness or any visual acuity drops �e.g., myo-
pia or other focal abnormalities�. The robustness tests of Sec.
V suggest that the dimensionality of patterns will increase
for dispersive patterns �as they should, approaching homoge-
neity�, which could replicate such vision problems.

Finally, the methods outlined herein do not all completely
correspond to actual physiological processes which occur in
the eye. Reference �28� provides several alternative color
space transformations which are perhaps more appropriate
for the actual analysis of cone-photoreceptor excitations

FIG. 10. Sample luminance gradients of images for AV01 �top�
and AV06 �bottom�.
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from lightness-luminance and chromatic stimuli. A full in-
vestigation and implementation of these methods is dis-
cussed in Ref. �29�.

XII. CONCLUDING REMARKS
AND FUTURE DIRECTIONS

The use of fractal and multifractal analysis as a discrimi-
nator or fingerprint method for classifying abstract expres-
sionist art is a budding field. However, the available results
are indicative that the method may well yield promising re-
sults. The fractal signatures obtained from paint blobs are not
significantly different from one another, implying that this
method is not useful for “authenticating” works by any one
particular artist within a movement. It apparently does dif-
ferentiate between the movements themselves. This is similar
to the behavior observed in �11�, where the multifractal spec-
trum was shown to differentiate between galaxy cluster for-
mation mechanisms, but could not discriminate between in-
stances within the same model. The “edge multifractal” does
yield differentiable results, curiously, which based on aspects
of visual processing, lends to the interpretation that this
could represent some type of “aesthetic preference.”

One of the motivational questions which inspired the frac-
tal analysis of gestural expressionist art is, does there exist an
inherent structure within the painted patterns which one per-
ceives and hence yields an unconscious psychological effect
on the observer? Rephrased, one can pose the question does
the brain possess a mechanism whereby the observer can
gain information from a scene previously unknown to them?

This question certainly addresses the very heart of recog-
nition and learning methodologies, but unfortunately the ex-
act neural mechanisms which lead to cognition are not well
understood. Recent discoveries in neuroscience have paved

the way for a potential revolution in this field, however.
Recent studies have revealed striking neural activity in

several species of primates which respond not only to physi-
cal imitation of observed movements by others, but also pas-
sive observation of such actions. That is, such neural firings
are indicative that the individual need not repeat the action in
order to cognitively process its meaning—quite literally, a
case of “monkey see, monkey do.” Based on these imitation
characteristics, such cells have been dubbed mirror neurons.
For a basic introduction, see �41� and references therein.

Additional studies suggest that mirror neurons may be
present in higher species of primates �and in particular may
be central to the development of language skills in humans
�42��. If observation of action can trigger their firings and
initiate comprehension of its meaning, then it may not be
unreasonable to expect that observation of the trace of an
action can also prompt similar neurophysiological responses.

The authors of �5� note that many natural patterns possess
multifractal scaling behavior, but these are not “art” per se.
What is the underlying differentiator, then, that ascribes to
these statistically similar patterns the label of “art”? Thus, by
observing a complex but statistically ordered scene such as
Pollock’s art, mirror neurons could help to bridge the gap
between the initial visual processing and associative compre-
hension and appreciation of the actions required to form the
work �43�. Further study of these hypotheses is currently
underway.
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